Depth of Initial Ideals of Normal Edge Rings

نویسندگان

  • TAKAYUKI HIBI
  • AKIHIRO HIGASHITANI
  • KYOUKO KIMURA
چکیده

Let G be a finite graph on the vertex set [d] = {1, . . . , d} with the edges e1, . . . , en and K[t] = K[t1, . . . , td] the polynomial ring in d variables over a field K. The edge ring of G is the semigroup ringK[G] which is generated by those monomials t = titj such that e = {i, j} is an edge of G. Let K[x] = K[x1, . . . , xn] be the polynomial ring in n variables over K and define the surjective homomorphism π : K[x] → K[G] by setting π(xi) = t ei for i = 1, . . . , n. The toric ideal IG of G is the kernel of π. It will be proved that, given integers f and d with 6 ≤ f ≤ d, there exist a finite connected nonbipartite graph G on [d] together with a reverse lexicographic order <rev on K[x] and a lexicographic order <lex on K[x] such that (i) K[G] is normal, (ii) depthK[x]/ in<rev (IG) = f and (iii) K[x]/ in<lex(IG) is Cohen–Macaulay, where in<rev (IG) (resp. in<lex(IG)) is the initial ideal of IG with respect to <rev (resp. <lex) and where depthK[x]/ in<rev (IG) is the depth of K[x]/ in<rev (IG).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Results on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module

Let  be a local Cohen-Macaulay ring with infinite residue field,  an Cohen - Macaulay module and  an ideal of  Consider  and , respectively, the Rees Algebra and associated graded ring of , and denote by  the analytic spread of  Burch’s inequality says that  and equality holds if  is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of  as  In this paper we ...

متن کامل

Depth of Edge Rings Arising from Finite Graphs

Let G be a finite graph and K[G] the edge ring of G. Based on the technique of Gröbner bases and initial ideals, it will be proved that, given integers f and d with 7 ≤ f ≤ d, there exists a finite graphG on [d] = {1, . . . , d} with depthK[G] = f and with Krull-dimK[G] = d.

متن کامل

On $z$-ideals of pointfree function rings

Let $L$ be a completely regular frame and $mathcal{R}L$ be the ‎ring of continuous real-valued functions on $L$‎. ‎We show that the‎ ‎lattice $Zid(mathcal{R}L)$ of $z$-ideals of $mathcal{R}L$ is a‎ ‎normal coherent Yosida frame‎, ‎which extends the corresponding $C(X)$‎ ‎result of Mart'{i}nez and Zenk‎. ‎This we do by exhibiting‎ ‎$Zid(mathcal{R}L)$ as a quotient of $Rad(mathcal{R}L)$‎, ‎the‎ ‎...

متن کامل

On the binomial edge ideals of block graphs

We find a class of block graphs whose binomial edge ideals have minimal regularity. As a consequence, we characterize the trees whose binomial edge ideals have minimal regularity. Also, we show that the binomial edge ideal of a block graph has the same depth as its initial ideal.

متن کامل

Binomial edge ideals and rational normal scrolls

‎Let $X=left(‎ ‎begin{array}{llll}‎ ‎ x_1 & ldots & x_{n-1}& x_n\‎ ‎ x_2& ldots & x_n & x_{n+1}‎ ‎end{array}right)$ be the Hankel matrix of size $2times n$ and let $G$ be a closed graph on the vertex set $[n].$ We study the binomial ideal $I_Gsubset K[x_1,ldots,x_{n+1}]$ which is generated by all the $2$-minors of $X$ which correspond to the edges of $G.$ We show that $I_G$ is Cohen-Macaula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011